Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Antonie Van Leeuwenhoek ; 117(1): 66, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607563

RESUMO

The pink-colored and strictly aerobic bacterium strain, designated as TK19036T, was isolated from mesopelagic layer of the Southwest Indian Ocean. This novel isolate can grow at 10-45 °C (optimum, 30 °C), pH 6.0-8.0 (optimum, pH 7.0), and 2-14% NaCl concentrations (w/v) (optimum, 6%). The predominant respiratory quinone was Menaquinone-7. Major polar lipid profiles contained two aminolipids, aminophospholipid, two glycolipids, phosphatidylethanolamine, and three unknown polar lipids. The preponderant cellular fatty acids were iso-C15:0, C16:1 ω5c and iso-C17:0 3-OH. Phylogenetic analyses based on 16S rRNA gene sequence uncovered that the strain TK19036T pertained to the family Catalinimonadaceae under phylum Bacteroidota, and formed a distinct lineage with the closed species Tunicatimonas pelagia NBRC 107804T. The up-to-bacteria-core gene phylogenetic trees also demonstrated a deep and novel branch formed by the strain TK19036T within the family Catalinimonadaceae. Based on chemotaxonomic, phylogenetic and genomic features presented above, strain TK19036T represents a novel species from a novel genus of the family Catalinimonadaceae, for which the name Roseihalotalea indica gen. nov. sp. nov. is proposed. The type strain is TK19036T (= CGMCC 1.18940T = NBRC 116371T).


Assuntos
Bacteroidetes , Ácidos Graxos , Oceano Índico , Filogenia , RNA Ribossômico 16S/genética , Bacteroidetes/genética
2.
J Exp Clin Cancer Res ; 43(1): 126, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671459

RESUMO

BACKGROUND: Aberrant alternative splicing (AS) is a pervasive event during colorectal cancer (CRC) development. SF3B3 is a splicing factor component of U2 small nuclear ribonucleoproteins which are crucial for early stages of spliceosome assembly. The role of SF3B3 in CRC remains unknown. METHODS: SF3B3 expression in human CRCs was analyzed using publicly available CRC datasets, immunohistochemistry, qRT-PCR, and western blot. RNA-seq, RNA immunoprecipitation, and lipidomics were performed in SF3B3 knockdown or overexpressing CRC cell lines. CRC cell xenografts, patient-derived xenografts, patient-derived organoids, and orthotopic metastasis mouse models were utilized to determine the in vivo role of SF3B3 in CRC progression and metastasis. RESULTS: SF3B3 was upregulated in CRC samples and associated with poor survival. Inhibition of SF3B3 by RNA silencing suppressed the proliferation and metastasis of CRC cells in vitro and in vivo, characterized by mitochondria injury, increased reactive oxygen species (ROS), and apoptosis. Mechanistically, silencing of SF3B3 increased mTOR exon-skipped splicing, leading to the suppression of lipogenesis via mTOR-SREBF1-FASN signaling. The combination of SF3B3 shRNAs and mTOR inhibitors showed synergistic antitumor activity in patient-derived CRC organoids and xenografts. Importantly, we identified SF3B3 as a critical regulator of mTOR splicing and autophagy in multiple cancers. CONCLUSIONS: Our findings revealed that SF3B3 promoted CRC progression and metastasis by regulating mTOR alternative splicing and SREBF1-FASN-mediated lipogenesis, providing strong evidence to support SF3B3 as a druggable target for CRC therapy.


Assuntos
Processamento Alternativo , Neoplasias Colorretais , Progressão da Doença , Metástase Neoplásica , Serina-Treonina Quinases TOR , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Camundongos , Animais , Serina-Treonina Quinases TOR/metabolismo , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/genética , Linhagem Celular Tumoral , Feminino , Proliferação de Células , Masculino
3.
Cell Mol Biol Lett ; 29(1): 48, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589794

RESUMO

Clustered regularly interspaced short palindromic repeats and associated Cas protein (CRISPR-Cas), a powerful genome editing tool, has revolutionized gene function investigation and exhibits huge potential for clinical applications. CRISPR-Cas-mediated gene knockout has already become a routine method in research laboratories. However, in the last few years, accumulating evidences have demonstrated that genes knocked out by CRISPR-Cas may not be truly silenced. Functional residual proteins could be generated in such knockout organisms to compensate the putative loss of function, termed herein knockout escaping. In line with this, several CRISPR-Cas-mediated knockout screenings have discovered much less abnormal phenotypes than expected. How does knockout escaping happen and how often does it happen have not been systematically reviewed yet. Without knowing this, knockout results could easily be misinterpreted. In this review, we summarize these evidences and propose two main mechanisms allowing knockout escaping. To avoid the confusion caused by knockout escaping, several strategies are discussed as well as their advantages and disadvantages. On the other hand, knockout escaping also provides convenient tools for studying essential genes and treating monogenic disorders such as Duchenne muscular dystrophy, which are discussed in the end.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos
4.
Comput Biol Med ; 175: 108472, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663349

RESUMO

With the rapid development of artificial intelligence, automated endoscopy-assisted diagnostic systems have become an effective tool for reducing the diagnostic costs and shortening the treatment cycle of patients. Typically, the performance of these systems depends on deep learning models which are pre-trained with large-scale labeled data, for example, early gastric cancer based on endoscopic images. However, the expensive annotation and the subjectivity of the annotators lead to an insufficient and class-imbalanced endoscopic image dataset, and these datasets are detrimental to the training of deep learning models. Therefore, we proposed a Swin Transformer encoder-based StyleGAN (STE-StyleGAN) for unbalanced endoscopic image enhancement, which is composed of an adversarial learning encoder and generator. Firstly, a pre-trained Swin Transformer is introduced into the encoder to extract multi-scale features layer by layer from endoscopic images. The features are subsequently fed into a mapping block for aggregation and recombination. Secondly, a self-attention mechanism is applied to the generator, which adds detailed information of the image layer by layer through recoded features, enabling the generator to autonomously learn the coupling between different image regions. Finally, we conducted extensive experiments on a private intestinal metaplasia grading dataset from a Grade-A tertiary hospital. The experimental results show that the images generated by STE-StyleGAN are closer to the initial image distribution, achieving a Fréchet Inception Distance (FID) value of 100.4. Then, these generated images are used to enhance the initial dataset to improve the robustness of the classification model, and achieved a top accuracy of 86 %.


Assuntos
Aprendizado Profundo , Humanos , Neoplasias Gástricas/diagnóstico por imagem , Neoplasias Gástricas/patologia , Aumento da Imagem/métodos , Endoscopia/métodos , Interpretação de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos
5.
Phys Chem Chem Phys ; 26(13): 10101-10110, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38483191

RESUMO

In this work, Eu-doped twin copper oxide (twin Cu1-xEuxO) was synthesized using the gas-liquid phase chemical deposition method in combination with high-temperature oxidation. The incorporation of Eu3+ ions was affected by their diffusivity and the related charge trapping mechanisms. The twin Cu1-xEuxO configuration exhibited significant room-temperature ferromagnetism. From our analysis, it was demonstrated that as the Eu3+ doping concentration increased, the saturation magnetization first increased and then gradually decreased, reaching a peak at 0.82 at%. A p-type to an n-type semiconducting transition was also recorded as the doping concentration increased. A significant anomalous Hall effect characterized by a maximum anomalous Hall coefficient of 1.65, and a maximum Hall conductivity mobility of 16.50 Ohm-1 cm-1 and 250.59 cm2 v-1 s-1, respectively, were derived for the twin Cu1-xEuxO, doped with 0.82 at% at room temperature. First-principles computational simulations were also conducted to elucidate the underlying mechanisms of the magnetic properties, the p-type to n-type transition, and the interplay between the spin-polarized states associated with 4f and carriers. In twin Cu1-xEuxO, the anomalous Hall effect originated from the contribution of the edge-to-jump scattering mechanism. The latter can be significantly enhanced by doping with Eu atoms, which yields the manifestation of the oblique scattering mechanism. Our work paves the way for the development of twin Cu1-xEuxO material structures, which emerge as an ideal candidate for future spintronic applications.

6.
Adv Mater ; : e2403131, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38547509

RESUMO

Unordered vacancies engineered in host anode materials cannot well maintain the uniform Na+ adsorbed and possibly render the local structural stress intense, resulting in electrode peeling and battery failure. Here, the indium is first introduced into Cu2Se to achieve the formation of CuInSe2. Next, an ion extraction strategy is employed to fabricate Cu0.54In1.15Se2 enriched with ordered vacancies by spontaneous formation of defect pairs. Such ordered defects, compared with unordered ones, can serve as myriad sodium ion micropumps evenly distributing in crystalline host to homogenize the adsorbed Na+ and the generated volumetric stress during the electrochemistry. Furthermore, Cu0.54In1.15Se2 is indeed proved by the calculations to exhibit smaller volumetric variation than the counterpart with unordered vacancies. Thanks to the distinct ordered vacancy structure, the material exhibits a highly reversible capacity of 428 mAh g-1 at 1 C and a high-rate stability of 311.7 mAh g-1 at 10 C after 5000 cycles when employed as an anode material for Sodium-ion batteries (SIBs). This work presents the promotive effect of ordered vacancies on the electrochemistry of SIBs and demonstrates the superiority to unordered vacancies, which is expected to extend it to other metal-ion batteries, not limited to SIBs to achieve high capacity and cycling stability.

7.
J Colloid Interface Sci ; 663: 478-490, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38422974

RESUMO

Utilizing diverse material combinations in heterogeneous structures has become an effective approach for regulating interface characteristics and electronic structures. The g-C3N4/Co3O4 heterostructures were fabricated by uniformly modifying Co3O4 nanoparticles onto discrete clusters of g-C3N4 nanosheets. Then, they were subsequently employed as positive electrode materials for assembling hybrid supercapacitors. According to the first-principles calculation, Co3O4 and g-C3N4 formed Co-N ionic bonds, establishing interfacial space symmetry-broken heterojunction and direct exchange and superexchange between ions at the interface and sub-interface. This resulted in a high-density spin-orbit hybrid heterogeneous polarization interface, significantly improving the quantum capacitance of heterojunction materials. Experimental results showed that the heterojunction had a specific capacitance of 2662 F g-1 at 1 A g-1. When the power density was 750 W kg-1, the energy density reached 128 Wh kg-1. Even when the power density was 16850 W kg-1, it could show an energy density of 62.5 Wh kg-1. The g-C3N4/Co3O4 heterojunction could realize high energy density charge storage as the cathode material of supercapacitors. The construction of heterogeneous polarization interfaces for high-energy quantum capacitors provides a new and effective method for the energy storage field.

8.
Nat Commun ; 15(1): 1711, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402216

RESUMO

Acidic CO2 electroreduction (CO2R) using renewable electricity holds promise for high-efficiency generation of storable liquid chemicals with up to 100% CO2 utilization. However, the strong parasitic hydrogen evolution reaction (HER) limits its selectivity and energy efficiency (EE), especially at ampere-level current densities. Here we present that enhancing CO2R intermediate coverage on catalysts promotes CO2R and concurrently suppresses HER. We identified and engineered robust Cu6Sn5 catalysts with strong *OCHO affinity and weak *H binding, achieving 91% Faradaic efficiency (FE) for formic acid (FA) production at 1.2 A cm-2 and pH 1. Notably, the single-pass carbon efficiency reaches a new benchmark of 77.4% at 0.5 A cm-2 over 300 hours. In situ electrochemical Fourier-transform infrared spectroscopy revealed Cu6Sn5 enhances *OCHO coverage ~2.8× compared to Sn at pH 1. Using a cation-free, solid-state-electrolyte-based membrane-electrode-assembly, we produce 0.36 M pure FA at 88% FE over 130 hours with a marked full-cell EE of 37%.

9.
Plants (Basel) ; 13(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276781

RESUMO

Botrytis cinerea can infect almost all of the important horticultural crops and cause severe economic losses globally every year. Modifying candidate genes and studying the phenotypic changes are among the most effective ways to unravel the pathogenic mechanism of this crop killer. However, few effective positive selection markers are used for B. cinerea genetic transformation, which limits multiple modifications to the genome, especially genes involving redundant functions. Here, we optimized a geneticin resistance gene, BcNPTII, based on the codon usage preference of B. cinerea. We found that BcNPTII can greatly increase the transformation efficiency of B. cinerea under G418 selection, with approximately 30 times higher efficiency than that of NPTII, which is applied efficiently to transform Magnaporthe oryzae. Using the gene replacement method, we successfully knocked out the second gene BOT2, with BcNPTII as the selection marker, from the mutant ΔoahA, in which OAHA was first replaced by the hygromycin resistance gene HPH in a field strain. We obtained the double knockout mutant ΔoahA Δbot2. Our data show that the codon-optimized BcNPTII is an efficient positive selection marker for B. cinerea transformation and can be used for various genetic manipulations in B. cinerea, including field wild-type strains.

10.
Small Methods ; 8(3): e2300836, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37926701

RESUMO

Nb4 C3 Tx MXene has shown extraordinary promise for various applications owing to its unique physicochemical properties. However, it can only be synthesized by the traditional HF-based etching method, which uses large amounts of hazardous HF and requires a long etching time (> 96 h), thus limiting its practical application. Here, an ultra-efficient and environmental-friendly H2 O-assisted supercritical etching method is proposed for the preparation of Nb4 C3 Tx MXene. Benefiting from the synergetic effect between supercritical CO2 (SPC-CO2 ) and subcritical H2 O (SBC-H2 O), the etching time for Nb4 C3 Tx MXene can be dramatically shortened to 1 h. The as-synthesized Nb4 C3 Tx MXene possesses uniform accordion-like morphology and large interlayer spacing. When used as anode for Li-ion battery, the Nb4 C3 Tx MXene delivers a high reversible specific capacity of 430 mAh g-1 at 0.1 A g-1 , which is among the highest values achieved in pure-MXene-based anodes. The superior lithium storage performance of the Nb4 C3 Tx MXene can be ascribed to its high conductivity, fast Li+ diffusion kinetics and good structural stability.

11.
World J Clin Cases ; 11(31): 7619-7628, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38078146

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a common respiratory disorder that affects the elderly population and increases the risk of postoperative pulmonary complications (PPCs) after major surgeries. Sevoflurane is a volatile anesthetic that has been shown to have anti-inflammatory and antioxidant properties and attenuate lung injury in animal models. AIM: To evaluate the protective effect of sevoflurane on the lung function of elderly COPD patients undergoing total hip arthroplasty (THA). METHODS: In this randomized controlled trial, we randomly assigned 120 elderly patients with COPD, who were scheduled for THA, to receive either sevoflurane (sevoflurane group) or propofol (propofol group) as the maintenance anesthetic. The primary outcome was the incidence of PPCs within seven days after surgery. The secondary outcomes were changes in the lung function parameters, inflammatory markers, oxidative stress markers, and postoperative pain scores. RESULTS: The results showed that the incidence of PPCs was significantly lower in the sevoflurane group than in the propofol group (10% vs 25%, P = 0.02). Furthermore, the decline in the forced expiratory volume in 1 s, forced vital capacity, and peak expiratory flow was significantly lesser in the sevoflurane group than in the propofol group at 24 h and 48 h after surgery (P < 0.05). The interleukin-6, tumor necrosis factor-alpha, malondialdehyde, and 8-hydroxy-2 α-deoxyguanosine levels were significantly lower in the sevoflurane group than in the propofol group at 24 h after surgery (P < 0.05). The sevoflurane group showed significantly lower postoperative pain scores than the propofol group at 6 h, 12 h, and 24 h after surgery (P < 0.05). CONCLUSION: Sevoflurane protects the lung function of elderly COPD patients undergoing THA under general anesthesia by reducing the incidence of PPCs, attenuating inflammatory and oxidative stress responses, and alleviating postoperative pain.

12.
Toxics ; 11(10)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37888713

RESUMO

The individual and combined associations of polycyclic aromatic hydrocarbons (PAHs) metabolites on liver function during pregnancy are still lacking. We aimed to explore the connection between urinary PAH metabolites and liver function in early pregnant women in southwest China based on the Zunyi birth cohort. Ten urinary PAH metabolites and five liver function parameters during early pregnancy were measured. The associations of single PAHs with parameters of liver function were assessed using multiple linear regression. A Bayesian kernel machine regression (BKMR) model was used to evaluate the joint associations of the PAH mixture with outcomes. We found that each 1% increment of urinary 2-hydroxyphenanthrene (2-OH-PHE) was associated with 3.36% (95% CI: 0.40%, 6.40%) higher alanine aminotransferase (ALT) and 2.22% (95% CI: 0.80%, 3.67%) higher aspartate aminotransferase (AST). Each 1% increment in 1-hydroxy-phenanthrene (1-OH-PHE) was significantly associated with 7.04% (95% CI: 1.61%, 12.75%) increased total bile acid (TBA). Additionally, there was a significant positive linear trend between 2-OH-PHE and AST and 1-OH-PHE and TBA. BKMR also showed a significant positive association of PAH mixture with AST. Our results indicate that PAH metabolites were associated with increased parameters of liver function among early pregnant women. Early pregnant women should pay more attention to the adverse relationships between PAHs and liver function parameters to prevent environment-related adverse perinatal outcomes.

13.
Phys Med Biol ; 68(18)2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37619578

RESUMO

Objective. Intestinal metaplasia (IM) is a common precancerous condition for gastric cancer, and the risk of developing gastric cancer increases as IM worsens. However, current deep learning-based methods cannot effectively model the complex geometric structure of IM lesions. To accurately diagnose the severity of IM and prevent the occurrence of gastric cancer, we revisit the deformable convolution network (DCN), propose a novel offset generation method based on color features to guide deformable convolution, named color-guided deformable convolutional network (CDCN).Approach. Specifically, we propose a combined strategy of conventional and deep learning methods for IM lesion areas localization and generating offsets. Under the guidance of offsets, the sample locations of convolutional neural network adaptively adjust to extract discriminate features in an irregular way that conforms to the IM shape.Main results. To verify the effectiveness of CDCN, comprehensive experiments are conducted on the self-constructed IM severity dataset. The experimental results show that CDCN outperforms many existing methods and the accuracy has been improved by 5.39% compared to DCN, reaching 84.17%. Significance. To the best of our knowledge, CDCN is the first method to grade the IM severity using endoscopic images, which can significantly enhance the clinical application of endoscopy, achieving more precise diagnoses.


Assuntos
Lesões Pré-Cancerosas , Neoplasias Gástricas , Humanos , Endoscopia , Redes Neurais de Computação
14.
Psych J ; 12(5): 599-617, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37532234

RESUMO

Enhancing English phonological awareness is critical in promoting native English speakers' reading development. However, less attention has been paid to the role of phonological awareness development for English language learners in a logographic context. This meta-analysis aims to evaluate the effectiveness of training native Chinese speakers' English phonological awareness and reading across age groups. Thirty-three articles, including 37 independent samples, were identified as training studies that reported English phonological awareness as an outcome measure, and 16 articles, including 17 independent samples, featured training studies that reported reading as an outcome measure. Results based on a random-effect model revealed the effect sizes for overall English phonological awareness (including English syllable awareness, phoneme awareness, and rhyme awareness) and overall reading (including word reading and pseudoword reading) were g = 0.651 (n = 3137) and g = 0.498 (n = 1506), respectively. Specifically, instructional training exerted a small impact on word reading (g = 0.297), moderate effects on syllable awareness (g = 0.468) and pseudoword reading (g = 0.586), a medium to large effect on phoneme awareness (g = 0.736), and a large impact on rhyme awareness (g = 0.948). The moderator analyses yielded several significant findings. Regarding the English phonological awareness outcome, programs integrating lexical semantic knowledge exhibited the largest trend in enhancing native Chinese speakers' skills. Among all age groups, upper elementary students benefited most from instructional training. Furthermore, more intensive training had a greater impact than less intensive training. In terms of the reading outcome, similar to English phonological awareness findings, upper elementary students realized the greatest improvements. Additionally, unpublished articles indicated a larger training effect on reading than published ones. These findings provide practitioners with guidelines for delivering effective instruction to promote phonological awareness and reading ability for English language learners in a logographic language context.

15.
mBio ; 14(4): e0107723, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37409814

RESUMO

Botrytis cinerea causes gray mold disease in leading crop plants. The disease develops only at cool temperatures, but the fungus remains viable in warm climates and can survive periods of extreme heat. We discovered a strong heat priming effect in which the exposure of B. cinerea to moderately high temperatures greatly improves its ability to cope with subsequent, potentially lethal temperature conditions. We showed that priming promotes protein solubility during heat stress and discovered a group of priming-induced serine-type peptidases. Several lines of evidence, including transcriptomics, proteomics, pharmacology, and mutagenesis data, link these peptidases to the B. cinerea priming response, highlighting their important roles in regulating priming-mediated heat adaptation. By imposing a series of sub-lethal temperature pulses that subverted the priming effect, we managed to eliminate the fungus and prevent disease development, demonstrating the potential for developing temperature-based plant protection methods by targeting the fungal heat priming response. IMPORTANCE Priming is a general and important stress adaptation mechanism. Our work highlights the importance of priming in fungal heat adaptation, reveals novel regulators and aspects of heat adaptation mechanisms, and demonstrates the potential of affecting microorganisms, including pathogens through manipulations of the heat adaptation response.

16.
Small ; 19(39): e2302342, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37259277

RESUMO

The efficient storage of electrons and the type of conduction in semiconductor materials are important factors in determining their electrochemical performance. However, the interaction between these two factors is often overlooked by researchers. In this study, the effects of Ni doping at Co3- x Nix O4 nanoparticles on the electronic storage form of the material and resulting changes in the conduction p/n-type are reported. Theoretical calculations demonstrate that n-type conduction with high effective mass of electrons contributes significantly to the redox reaction of electrode materials and is beneficial for improving electrochemical performance. The specific capacitance of Co3- x Nix O4 (x = 0.67) electrode material is 10 times larger than that of Co3 O4 due to enhanced orbital hybridization caused by Ni atom doping. The findings provide new directions for exploring the mechanism of conductive type conversion of materials and offer insights beyond the traditional approach of considering doping content alone.

17.
Planta Med ; 89(10): 940-951, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37236232

RESUMO

Traditional Chinese medicine injections have been widely used in China for the treatment of various diseases. Transporter-mediated drug-drug interactions are a major contributor to adverse drug reactions. However, the research on transporter-mediated Traditional Chinese medicine injection-drug interactions is limited. Shuganning injection is a widely used Traditional Chinese medicine injection for treating various liver diseases. In this study, we investigated the inhibitory effect of Shuganning injection and its four main ingredients (baicalin, geniposide, chlorogenic acid, and oroxylin A) on 9 drug transporters. Shuganning injection strongly inhibited organic anion transporter 1 and organic anion transporter 3 with IC50 values < 0.1% (v/v), and moderately inhibited organic anion transporter 2, organic anion transporting-polypeptide 1B1, and organic anion transporting-polypeptide 1B3 with IC50 values < 1.0%. Baicalin, the most abundant bioactive ingredient in the Shuganning injection, was identified as both an inhibitor and substrate of organic anion transporter 1, organic anion transporter 3, and organic anion transporting-polypeptide 1B3. Oroxylin A had the potential to act as both an inhibitor and substrate of organic anion transporting-polypeptide 1B1 and organic anion transporting-polypeptide 1B3. In contrast, geniposide and chlorogenic acid had no significant inhibitory effect on drug transporters. Notably, Shuganning injection markedly altered the pharmacokinetics of furosemide and atorvastatin in rats. Using Shuganning injection as an example, our findings support the implementation of transporter-mediated Traditional Chinese medicine injection-drug interactions in the development of Traditional Chinese medicine injection standards.


Assuntos
Transportadores de Ânions Orgânicos , Ratos , Animais , Transportadores de Ânions Orgânicos Sódio-Independentes , Transportador 1 de Ânion Orgânico Específico do Fígado , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto , Ácido Clorogênico , Medicina Tradicional Chinesa , Interações Medicamentosas , Peptídeos , Medicamentos sem Prescrição
18.
J Fungi (Basel) ; 9(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108945

RESUMO

The Shaluli Mountains are located in the southeastern part of the Tibetan Plateau at an elevation of 2500-5000 m. They are characterized by a typical vertical distribution of climate and vegetation and are considered a global biodiversity hotspot. We selected ten vegetation types at different elevation gradients representing distinct forests in the Shaluli Mountains to assess the macrofungal diversity, including subalpine shrub, Pinus spp., Populus spp., Pinus spp. and Quercus spp., Quercus spp., Abies spp., Picea spp. and Abies spp., Picea spp., Juniperus spp., and alpine meadow. In total, 1654 macrofungal specimens were collected. All specimens were distinguished by morphology and DNA barcoding, resulting in the identification of 766 species belonging to 177 genera in two phyla, eight classes, 22 orders, and 72 families. Macrofungal species composition varied widely among vegetation types, but ectomycorrhizal fungi were predominant. In this study, the analysis of observed species richness, the Chao1 diversity index, the invsimpson diversity index, and the Shannon diversity index revealed that the vegetation types with higher macrofungal alpha diversity in the Shaluli Mountains were composed of Abies, Picea, and Quercus. The vegetation types with lower macrofungal alpha diversity were subalpine shrub, Pinus spp., Juniperus spp., and alpine meadow. The results of curve-fitting regression analysis showed that macrofungal diversity in the Shaluli Mountains was closely related to elevation, with a trend of increasing and then decreasing with rising elevation. This distribution of diversity is consistent with the hump-shaped pattern. Constrained principal coordinate analysis based on Bray-Curtis distances indicated that macrofungal community composition was similar among vegetation types at similar elevations, while vegetation types with large differences in elevation differed significantly in macrofungal community composition. This suggests that large changes in elevation increase macrofungal community turnover. This study is the first investigation of the distribution pattern of macrofungal diversity under different vegetation types in high-altitude areas, providing a scientific basis for the conservation of macrofungal resources.

19.
BMC Genomics ; 24(1): 182, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37020265

RESUMO

Agaricus bisporus is the most widely cultivated edible mushroom in the world with a only around three hundred years known history of cultivation. Therefore, it represents an ideal organism not only to investigate the natural evolutionary history but also the understanding on the evolution going back to the early era of domestication. In this study, we generated the mitochondrial genome sequences of 352 A. bisporus strains and 9 strains from 4 closely related species around the world. The population mitogenomic study revealed all A. bisporus strains can be divided into seven clades, and all domesticated cultivars present only in two of those clades. The molecular dating analysis showed this species origin in Europe on 4.6 Ma and we proposed the main dispersal routes. The detailed mitogenome structure studies showed that the insertion of the plasmid-derived dpo gene caused a long fragment (MIR) inversion, and the distributions of the fragments of dpo gene were strictly in correspondence with these seven clades. Our studies also showed A. bisporus population contains 30 intron distribution patterns (IDPs), while all cultivars contain only two IDPs, which clearly exhibit intron loss compared to the others. Either the loss occurred before or after domestication, that could suggest that the change facilitates their adaptation to the cultivated environment.


Assuntos
Agaricus , Genoma Mitocondrial , Agaricus/genética , Europa (Continente)
20.
Micromachines (Basel) ; 14(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36984974

RESUMO

Due to its non-volatility and large capacity, NVM devices gradually take place at various levels of memories. However, their limited endurance is still a big concern for large-scale data centres. Compression algorithms have been used to save NVM space and enhance the efficiency of those lifetime extension methods. However, their own influence on the NVM lifetime is not clear. In order to fully investigate the impact of compression on NVM, this paper first studies bit flips involved in several typical compression algorithms. It is found that more bit flips would happen in the shrunken area of a memory block. This induces the phenomenon of intra-block wear unevenness, which sacrifices NVM lifetime. We propose a new metric called local bit flips to describe this phenomenon. In order to relieve the intra-block wear unevenness caused by compression, this paper proposes a sliding write method named SlidW to distribute the compressed data across the whole memory block. We first divide the memory block into several areas, and then consider five cases about the relationship between new data size and left space. Then, we place the new data according to the case. Comprehensive experimental results show that SlidW can efficiently balance wear and enhance NVM lifetime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA